
Rat IFN-γ ELISA 试剂盒

产品编号# CRE0002 (48/96 孔)

适用于大鼠血清、血浆或细胞培养上清液等样本

仅供研究,不用于临床诊断。

客服热线: 400-7060-959 * 技术支持邮箱: <u>tech@4abio.com</u> 公司官网: www.4abio.net

目录

简介 3	-
检测原理3	-
试剂盒组分 4	
储存条件 5	-
其他实验材料 (不提供, 但可协助购买):	-
注意事项	-
样本收集处理及保存方法 6	-
试剂准备 6	-
操作步骤	-
操作流程图 8	-
操作要点提示	-
结果判断9	-
结果重复性9	-
灵敏度 10	-
特异性 10	-
4 + 2 + 1	

该产品由北京四正柏生物科技有限公司研制。

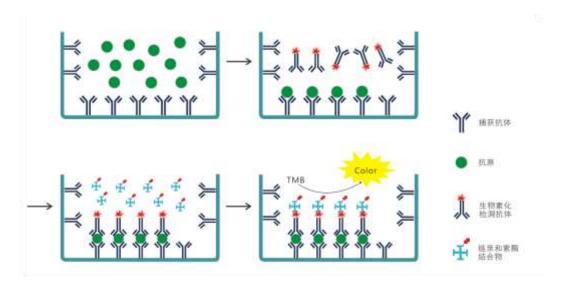
请根据试剂盒中所附说明书指引进行实验。

简介

1957年Isaacs和Lindenmann首先发现了病毒干扰现象,即病毒感染的细胞能产生一种因子,作用于其他细胞干扰病毒的复制,因而命名为干扰素(IFN)。1965年Wheelock等首先在PHA刺激的白细胞培养上清中发现具有IFN样抗病毒物质,但在pH2条件下即失去抗病毒的活性。1973年Youngert和Salvin发现来自淋巴细胞培养上清中存在一种IFN,但抗原性不同于以往发现的IFN,遂命名为Ⅱ型IFN,1980年统一命名为IFN-γ。1981年Goeddle等将IFN-γ基因克隆成功。

大鼠IFN-γ cDNA编码156个氨基酸的前体蛋白,包括19个氨基酸的信号肽。成熟的IFN-γ含有两个N-糖基化位点。大鼠的IFN-γ在氨基酸水平与小鼠和人分别有87%和39%的同源性。大鼠与小鼠IFN-γ 有交叉的生物学活性,但与人IFN-γ没有交叉的生物学活性。

IFN-γ与受体结合后可活化多种IFN-γ调节的基因。目前已知,IFN-γ刺激后至少有20种蛋白被表达,其中12种是IFN-γ刺激后所特有的。这种表达是由于活化特异的DNA结合蛋白使其从胞浆移位到胞核,如干扰素刺激的基因因子2(interferon-stimulated gene fac-tor 2,ISGF2)和γ-干扰素激活因子(gamma-interferon activation factor,GAF或STAT91)结合到IFN基因启动子中两个称之为γ干扰素活化点(gamma-interferon activation site,GAS)和干扰素刺激的反应元件(interferon-stimulated response element,ISRE)的位置上。


IFN-γ主要由活化NK细胞,Th1亚群和CD8+的细胞毒细胞产生。中性粒细胞、肥大细胞、角质形成细胞、感觉神经元巨噬细胞和B细胞也可产生IFN-γ。IFN-γ的生物学作用包括):

- (1) 诱导单核细胞、巨噬细胞、树突状细胞、皮肤成纤维细胞、血管内皮细胞、星状细胞等MHC II 类抗原的表达,使其参与抗原提呈和特异性免疫的识别过程。此外,IFN-γ可上调内皮细胞ICAM-1(CD54)表达,促进巨噬细胞FcγR表达,协同诱导TNF并促进巨噬细胞杀伤病原微生物。
- (2)促进LPS体外刺激小鼠B细胞分泌IgG2a,降低IgG1、IgG2b、IgG3和IgE的产生;抑制由IL-4诱导小鼠B细胞增殖,IgG1和IgE产生以及FcεRⅡ表达;促进SAC诱导的人B细胞的增殖。
 - (3) 协同IL-2诱导LAK活性,促进T细胞IL-2R表达。
 - (4) 诱导急性期蛋白合成,诱导髓样细胞分化。

在许多病理情况下,IFN-γ作为疾病的标志物的作用已得到证实。病毒感染时,IFN-γ产生。IFN-γ可作为鉴别结核性与非结核性腹水的诊断工具。IFN-γ在结核性腹水中的浓度显著高于非结核性腹水,灵敏度和特异性均达到100%。IFN-γ对多发性硬化症的免疫治疗的设计及检测有重要意义。在移植物排斥反应临床症状出现前,IFN-γ的表达量增加;I型糖尿病的初期,IFN-γ的产生显著下降。

检测原理

本实验采用双抗体夹心 ELISA。用抗大鼠 IFN-γ 单克隆抗体预包被酶标板,加入适度稀释的样本和标准品,其中的 IFN-γ 会与其单抗结合,洗去游离成分;加入生物素化的抗大鼠 IFN-γ 抗体,抗大鼠 IFN-γ 抗体与结合在单抗上的大鼠 IFN-γ 结合而形成免疫复合物,洗去游离的成分;加入辣根过氧化物酶标记的亲合素,生物素与亲合素特异性结合,洗去未结合的酶结合物;加入显色剂,若反应孔中有 IFN-γ,辣根过氧化物酶会使无色的显色剂现蓝色;加终止液变黄。在 450nm 下测 OD 值,IFN-γ 浓度与 OD450 值之间呈正比,可通过绘制标准曲线计算出标本中 IFN-γ 浓度。

检测原理示意图

试剂盒组分

试剂盒组分	96 孔	48 孔	配制
1a 标准品	2支	1支	按说明书进行稀释
1b 标准品和标本稀释液	1瓶	1瓶	即用型
2a 浓缩生物素化抗体	2支	1支	按瓶签标识进行稀释
2b 生物素化抗体稀释液	1 瓶	1瓶	即用型
3a 浓缩酶结合物(避光)	2 支	1支	按瓶签标识进行稀释
3b 酶结合物稀释液	1 瓶	1瓶	即用型
4 浓缩洗涤液 20×	1 瓶	1瓶	按瓶签标识进行稀释
显色剂 (避光)	1 瓶	1瓶	即用型
终止液	1 瓶	1瓶	即用型
抗体包被板条	8×12	8×6	即用型
封板胶纸	4 张	2 张	即用型
说明书	1份	1份	

如果您收到试剂盒后发现上表中有任何组分破损或缺失,请及时联系我司客服 400-7060-959 或 <u>tech@4abio.com</u>。 我们将及时为您解决相关问题。

储存条件

未启	· ·封的试剂盒	4℃保存,请于保质期内使用。
	1b 标准品和标本稀释液	
已	2a 浓缩生物素化抗体(100×)	可以整盒放入 4℃储存 1 个月。
启	2b 生物素化抗体稀释液	
封或	3a 浓缩酶结合物(避光 100×)	2a 浓缩生物素化抗体和 3a 浓缩酶结合物需现用现
里	3b 酶结合物稀释液	配。
半新	4 浓缩洗涤液 20×	
溶	显色剂 (避光)	
解	终止液	4℃或常温保存
	标准品	重溶后分装,-20℃存放一个月,避免反复冻融。稀释
试	13. F. HH	后的标准品使用后应丢弃,不得重复使用。
剂	 抗体包被板条	实验中不用的板条应立即放回包装袋中,密封干燥
,13	· NPOWWy	4℃保存。

以上储存条件均要求在试剂盒保质期内。

其他实验材料 (不提供, 但可协助购买):

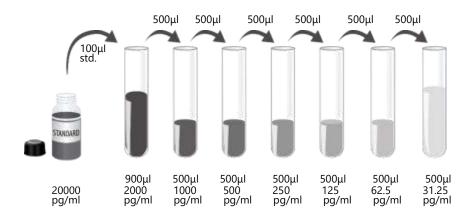
- 1. 酶标仪(450nm)
- 2. 高精度可调移液器及吸头: 0.5-10, 2-20, 20-200, 200-1000_µl; 一次检测样品较多时, 最好用多通道移液器。
- 3. 自动洗板机或洗瓶
- 4. 37℃温箱
- 5. 双蒸水或去离子水
- 6. 坐标纸
- 7. 量筒

注意事项

- 1. 试剂盒保存在2-8℃,除复溶后的标准品,其它成分不可冷冻。
- 2. 浓缩生物素化抗体(2a)、浓缩酶结合物(3a)装量极少,运输中颠簸和可能的倒置会使液体沾到管壁或瓶盖。使用前请离心处理以使附着于管壁或瓶盖的液体沉积到管底。
- 3. 为避免交叉污染请使用一次性吸头。
- 4. 终止液和显色剂具腐蚀性,避免皮肤及粘膜直接接触,一旦接触到这些液体,请尽快用大量水冲洗。
- 5. 使用干净的塑料容器配制洗涤液,使用前充分混匀试剂盒里的各种成份及样品。
- 6. 洗涤酶标板时应充分拍干,不要将吸水纸直接放入酶标反应孔中吸水。
- 7. 不要用其它来源的试剂混合或替代该产品的组分,不同批号的试剂盒组份不能混用,请在有效日期内使用本产品。

- 8. 在试验中标准品和样本检测时建议作双复孔或三复孔,加入试剂的顺序应一致,以保证所有反应孔孵育的时间一样。
- 9. 充分混匀对反应结果尤为重要,最好使用微量振荡器(使用最低频率进行振荡)。
- 10. 避免操作过程中酶标板干燥,干燥会使酶标板上生物成分迅速失活,影响实验结果。
- 11. 适当的稀释样品,使样品值落在标准曲线范围内,根据待测因子含量高、中、低的不同,建议采用1:100,1:10,1:12稀释样品。如果样品OD值高于最高标准,适当增加稀释度并重复检测。
- 12. 标准品稀释液、操作人、移液方式、洗涤方法、孵育时间及温度、试剂盒批次的不同均可能会导致结果的差异。
- 13. 此法可有效的消除可溶性受体、结合蛋白以及生物样品中的其他因素的干扰。

样本收集处理及保存方法


- 1. **血清**:使用不含热原和内毒素的试管,收集血液后,室温凝血30min,1000×g离心10min,小心分离血清。
- 2. 血浆: 用EDTA、柠檬酸盐、肝素作为抗凝剂收集血浆,收集后30min内以1000×g离心15min去除颗粒。
- 3. 细胞上清液: 1000×g离心10min去除颗粒和聚合物。
- 4. **保存**:若样品不立即检测,请将其按一次用量分装,-20℃—-70℃保存,避免反复冻融。尽量避免使用溶血或高血脂样本。如果血清中含有大量颗粒,检测前先离心或过滤去除;室温下解冻,请勿于37℃或更高的温度加热解冻。
- 5. 稀释:可根据实际情况,将标本做适当倍数稀释(建议做预实验,以确定稀释倍数)。

注:正常大鼠血清或血浆样本建议做1:2稀释。

试剂准备

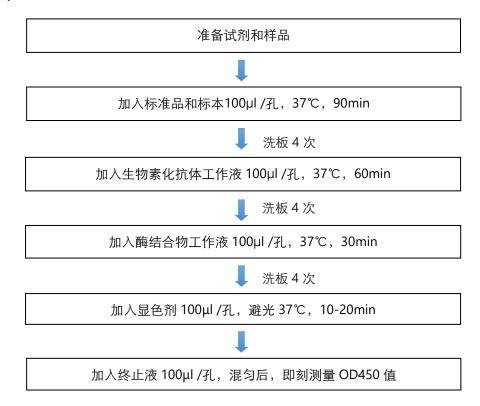
- 1. 提前30min从冰箱中取出试剂盒,平衡至室温。
- 2. **洗涤缓冲液**: 从冰箱中取出的浓缩洗涤液可能有结晶,这属于正常现象,加热并轻轻摇晃使结晶完全溶解后再配制。将浓缩洗涤液用双蒸水稀释(1:20)。未用完的放回4℃。
- 3. **标准品:** 加入标准品/标本稀释液(1b)1.0ml 至冻干标准品(1a)中,待彻底溶解后,静置 15 分钟混匀(浓度为 20000pg/ml),然后根据需要进行稀释,见下图(建议标准曲线使用以下浓度: 2000、1000、500、250、125、62.5、31.25、0 pg/ml)。稀释的标准品不得重复使用,未用完的标准品应按照一次用量分装后,将其放在-20~-70℃贮存,一次性使用,避免反复冻融。

标准准品稀释方法:

4. **生物素化抗体工作液**:根据每孔需要100μl来计算总的用量,多配制100-200μl。以生物素化抗体稀释液 (2b)稀释浓缩生物素化抗体(2a)(1:100)。最好现用现配。**(稀释方法见下表)**

所用板条数	浓缩生物素化抗体	生物素化抗体稀释液	
12	110µL	+	10890µL
10	90μL	+	8910µL
8	70μL	+	6930µL
6	50μL	+	4950μL
4	33µL	+	3267µL
2	17µL	+	1683µL
1	9µL	+	891µL

5. **酶结合物工作液**:以酶结合物稀释液(3b)稀释浓缩酶结合物(3a)(1:100)。最好现用现配。**(稀释方法见下** 表)


所用板条数	浓缩酶结合物		酶结合物稀释液
12	110µL	+	10890μL
10	90µL	+	8910μL
8	70µL	+	6930µL
6	50μL	+	4950μL
4	33µL	+	3267µL
2	17μL	+	1683µL
1	9µL	+	891µL

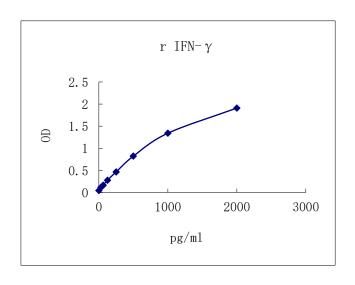
操作步骤

1. 按照上述准备工作配制好各种溶液。

- 2. 根据待测样品数量和标准品的数量决定所需的板条数,并增加1孔作为空白对照孔。分别将标本和不同浓度标准品(100µI/孔)加入相应孔中(零孔只加标准品/样本稀释液),用封板胶纸封住反应孔,37℃孵箱孵育90分钟(空白对照孔除外)。
- 3. 洗板4次: (1)自动洗板机:要求注入的洗涤液为350µl,注入与吸出间隔15-30秒。(2)手工洗板:甩尽孔内液体,每孔加洗涤液350µl,静置30秒后甩尽液体,在厚迭吸水纸上拍干。
- 4. 加入生物素化抗体工作液(100µl/孔)。用封板胶纸封住反应孔,37℃孵箱孵育60分钟(空白对照孔除外)。
- 5. 洗板4次。
- 加入酶结合物工作液(100µl/孔)。用封板胶纸封住反应孔,37℃孵箱孵育30分钟(空白对照孔除外)。
- 7. 洗板4次。
- 8. 加入显色剂100µl/孔,避光,37℃孵箱孵育10-20分钟。
- 9. 加入终止液100µl/孔,混匀后即刻测量OD450值(5分钟内)。

操作流程图

操作要点提示


- 1. 配制各种试剂时要充分混匀,但要避免产生大量泡沫,以免加样时加入大量的气泡,产生加样误差。
- 2. 为避免交叉污染,在加入不同浓度的标准品、不同样品、不同试剂时谨记及时更换吸头。
- 3. 为了确保准确的结果,在每次孵育前均需使用新封板胶纸封住反应孔。
- 4. 显色剂在添加之前,应保持无色,请勿使用已变为蓝色的显色溶液。最佳显色时间对标准曲线很重要,肉眼可见前 3-4 孔有梯度蓝色,后 3-4 孔差别不明显,零孔无蓝色出现即可终止。
- 5. 每次检测均要做标准曲线,根据样品待测因子的含量,适当稀释或浓缩样本,最好做预实验。

结果判断

- 1. 每个标准品和标本的OD值应减去空白孔的OD值,如果做复孔,求其平均值。
- 2. 使用计算机软件以吸光度OD值为纵坐标(Y),相应的标准品浓度为横坐标(X),生成相应的标准曲线,样品待检物含量可根据其OD值由标准曲线换算出相应的浓度。
- 3. 若标本 OD 值高于标准曲线上限,应适当稀释后重测,计算浓度时应乘以稀释倍数算标本含量。
- 4. 参考数据:

标准品浓度(pg/ml)	OD值1	OD值2	平均值	矫正值
0	0.048	0.043	0.046	
31.25	0.115	0.116	0.116	0.115
62.5	0.168	0.160	0.164	0.166
125	0.275	0.278	0.277	0.266
250	0.468	0.459	0.464	0.457
500	0.817	0.824	0.821	0.804
1000	1.345	1.334	1.340	1.358
2000	1.912	1.905	1.909	1.906

数据仅供参考,不同用户最佳显色时间会有所不同

本图仅供参考, 应以同次试验标准品所绘标准曲线为准

结果重复性

板间,板内变异系数均<10%。

灵敏度

最低检测大鼠 IFN-γ 剂量小于 7pg/ml。 最低检出量测定方法: 20 个零标准的平均 OD 值增加两个标准差,再计算相应的浓度。

特异性

此试剂盒可检测天然和重组的大鼠 IFN-γ,以 50ng/ml 平行做特异性试验,均不与下列细胞因子及蛋白反应。

重组大鼠细胞因子	重组人细胞因子
CINC-1	IFN-γ
GDNF	
β-NGF	
PDGF-BB	
TNF-α	
IL-1β	
IL-2	
IL-4	
IL-6	
IL-10	

参考文献

- 1. Wheelock, E.F. (1965) Science 149:310.
- 2. Boehm, U. et al. (1997) Annu. Rev. Immunol. 15:749.
- 3. Dijkema, R. et al. (1986) Meth. Enzymol. 119:453.
- 4. Dijkema, R. et al. (1985) EMBO J. 4:761.
- 5. Billiau, A. (1996) Adv. Immunol. 62:61.
- 6. Rinderknecht, E. et al. (1984) J. Biol. Chem. 259:6790.
- 7. Weil, J. et al. (1983) Nature 301:437.
- 8. Harris, C.A. et al. (1992) J. Biol. Chem. 267:6865.
- 9. Williams, B.R.G. (1991) Eur. J. Biochem. 200:1.
- 10. Shuai, K. et al. (1993) Science 261:1744.
- 11. Sadowski, H.B. et al. (1993) Science 261:1739.
- 12. Decker, T. et al. (1991) EMBO J. 10:927.

- 13. Mirkovitch, J. et al. (1992) Mol. Cell. Biol. 12:1.
- 14. Yeaman, G.R. et al. (1998) J. Immunol. 160:5145.
- 15. Gupta, A.A. et al. (1996) J. Immunol. 157:2123.
- 16. Howie, S.E.M. et al. (1996) J. Invest. Dermatol. 106:1218.
- 17. Neumann, H. et al. (1997) J. Exp. Med. 186:2023.
- 18. Kitagawa, M. et al. (1997) Leukemia 11:2049.
- 19. Puddu, P. et al. (1997) J. Immunol. 159:3490.
- 20. Yoshimoto, T. et al. (1997) Proc. Natl. Acad. Sci. USA 94:3948.
- 21. Ijzermans, J.M. and R.L. Marquet (1989) Immunobiol. 179:456.
- 22. Mogensen, S.C. and J.L. Virelizier (1987) Interferon 8:55.
- 23. Grossberg, S.E. et al. (1989) Experientia 45:508.
- 24. Adolf, G.R. (1985) Oncology (Suppl. 1) 42:33.
- 25. Samuel, C.E. (1991) Virology 183:1.
- 26. Pellegrini, S. and C. Schindler (1993) Trends Biochem. Sci. 18:338.
- 27. Reiter, Z. (1993) J. Interferon Res. 13:247.
- 28. Boehm, U. et al. (1997) Annu. Rev. Immunol. 15:749.